Three p-xylene-solvated pseudopolymorphs of bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II). - PDF Download Free (2024)

research papers Acta Crystallographica Section C

Structural Chemistry ISSN 2053-2296

Three p-xylene-solvated pseudopolymorphs of bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II) Akiko Hori,* Kyosuke Nakajima and Hidetaka Yuge School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan Correspondence e-mail: [emailprotected] Received 9 July 2014 Accepted 9 September 2014

The Cu2+ ions in the title compounds, namely bis[1,3bis(pentafluorophenyl)propane-1,3-dionato-2O,O0 ]copper(II) p-xylene n-solvate, [Cu(C15HF10O2)2]nC8H10, with n = 1, (I), n = 2, (II), and n = 4, (III), are coordinated by two 1,3bis(pentafluorophenyl)propane-1,3-dionate ligands. The coordination complexes of (I) and (II) have crystallographic inversion symmetry at the Cu atom and the p-xylene molecule in (I) also lies across an inversion centre. The p-xylene molecules in (I) and (II) interact with the pentafluorophenyl groups of the complex via arene–perfluoroarene interactions. In the crystal of (III), two of the p-xylene molecules interact with the pentafluorophenyl groups via arene–perfluoroarene interactions. The other two p-xylene molecules are located on the CuO4 coordination plane, forming a uniform cavity produced by metal interactions.

complex and two benzene molecules. A metal interaction was observed between a Cu2+ ion and a benzene molecule. The high encapsulation of aromatic guest molecules into the crystals of the fluorinated complex was also found in the corresponding [Ni2(L)4(H2O)2] complex, giving the benzenerich pseudopolymorphs [Ni2(L)4(H2O)2]2C6H6 and [Ni2(L)4(H2O)2]4C6H6 (Hori & Mizutani, 2009). Fluorination drastically changes not only the molecular geometry and molecular properties, but also alters the intermolecular interactions and facilitates favourable noncovalent interactions (Reichenbacher et al., 2005; Hori, 2012; Hori et al., 2014). As part of a detailed analysis of complexes involving arene–perfluoroarene interactions, we prepared three pseudopolymorphs with different numbers of p-xylene solvent molecules, namely [Cu(L)2]C8H10, (I), [Cu(L)2]2C8H10, (II), and [Cu(L)2]4C8H10, (III), which included the p-xylene solvent at 10.8, 19.9, and 32.3 wt%, respectively. These structures were fully characterized by X-ray crystallographic studies, showing that the guest molecules are stabilized and fixed in an orientation suitable for electrostatic interactions with the Cu(L)2 complex. In this study, the three crystal forms (I)–(III) are compared and discussed in relation to their intermolecular interactions.

Keywords: crystal structure; 1,3-bis(pentafluorophenyl)propane1,3-dionate; arene–perfluoroarene interactions; copper complexes; variable solvation; metal p interactions; pseudopolymorphs.

1. Introduction While single crystals of M(dbm)2 (dbm is dibenzoylmethane) include no solvent molecules (Vigato et al., 2009; Soldatov et al., 2001), coordination complexes with the fully fluorinated bis(pentafluorophenyl)propane-1,3-dione (HL) ligand produced cocrystals, which abundantly take up benzene molecules when crystallized from a benzene–CH2Cl2 solvent mixture (Hori & Arii, 2007). For example, single crystals of Cu(L)2 were obtained as Cu(L)23C6H6 with 21 wt% benzene molecules. These high capacities for solvent occlusion are induced by two weak intermolecular interactions, viz. arene– perfluoroarene and metal . The arene–perfluoroarene interaction is currently well known as an electrostatic interaction (Patrick & Prosser, 1960; Williams, 1993) and was observed between the pentafluorophenyl groups of the

960

# 2014 International Union of Crystallography

2. Experimental 2.1. Synthesis and crystallization

Cu2+ complexes (I)–(III) were prepared according to a previously reported procedure (Hori & Arii, 2007). Crystallization from ethanol with p-xylene gave green block-shaped crystals of (I) suitable for X-ray structure analysis. Crystals of (II) and (III) were crystallized from p-xylene–CH2Cl2 as green block-shaped crystals. The crystals of the three compounds were apparently indistinguishable. 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in

doi:10.1107/S2053229614020294

Acta Cryst. (2014). C70, 960–964

research papers Table 1 Experimental details. (I)

(II)

(III)

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A

[Cu(C15HF10O2)2]C8H10 976.03 Orthorhombic, Pbca 120 11.1299 (10), 13.1194 (12), 23.797 (2)

[Cu(C15HF10O2)2]2C8H10 1082.19 Triclinic, P1 120 7.5688 (4), 11.8976 (6), 12.2578 (6)

, , ( ) ˚ 3) V (A Z Radiation type (mm1) Crystal size (mm)

90, 90, 90 3474.7 (5) 4 Mo K 0.78 0.40 0.25 0.05

90.7758 (5), 99.1187 (5), 105.8474 (5) 1046.57 (9) 1 Mo K 0.66 0.40 0.40 0.20

[Cu(C15HF10O2)2]4C8H10 1294.49 Monoclinic, Pn 100 13.8034 (16), 14.2545 (17), 14.9313 (17) 90, 108.0612 (13), 90 2793.1 (6) 2 Mo K 0.51 0.22 0.15 0.10

Bruker D8 goniometer diffractometer Multi-scan (SADABS; Bruker, 2013) 0.85, 0.96 18319, 3967, 3079

Bruker D8 goniometer diffractometer Multi-scan (SADABS; Bruker, 2013) 0.81, 0.88 12038, 4714, 4520

Bruker D8 goniometer diffractometer Multi-scan (SADABS; Bruker, 2013) 0.91, 0.95 31741, 12693, 10311

0.032 0.649

0.018 0.649

0.034 0.649

Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3) max, min (e A Absolute structure

0.031, 0.079, 1.02 3967 287 0 H-atom parameters constrained 0.32, 0.51 –

0.027, 0.074, 1.03 4714 324 0 H-atom parameters constrained 0.35, 0.50 –

Absolute structure parameter

0.040, 0.093, 1.03 12693 793 2 H-atom parameters constrained 0.37, 0.39 Refined as an inversion twin; 6303 Bijvoet pairs (Parsons et al., 2013) 0.494 (13)

Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2013), SHELXTL (Sheldrick, 2008) and Generate Report (Bruker, 2013).

geometrically idealized positions and refined as riding, with ˚ and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.95 A ˚ and Uiso(H) = 1.5Ueq(C) for methyl groups. C—H = 0.98 A Tetrasolvate (III) was refined as an inversion twin; Flack parameter = 0.494 (13) (Parsons et al., 2013).

3. Results and discussion Concerning the p-xylene encapsulation, crystals of solvates (I)–(III) were obtained independently as pseudopolymorphs under different conditions. For example, Cu(L)2 and an excess of p-xylene in ethanol were evaporated slowly to yield green block-shaped crystals of (I), which grew to a noteworthy large size (one edge > 5 mm). On the other hand, Cu(L)2 and an excess of p-xylene in CH2Cl2 (or CHCl3 or MeOH) were evaporated slowly to give green block-shaped crystals of (II). Evaporation of a solution of Cu(L)2 in an excess of p-xylene with no additional solvents also produced crystals of (II). We examined each crystallization at least three times, but never identified the crystallization of (I) under the conditions used to form (II) or vice versa. However, a green block-shaped crystal of (III) was occasionally solely obtained from p-xylene–CH2Cl2 as a single component without any admixture of (I) and (II). Unfortunately, crystals of (II) and (III) were optically indistinguishable based on their appearance. Acta Cryst. (2014). C70, 960–964

Figure 1 The molecular structure of monosolvate (I) at 120 K, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + 2, y + 2, z; (ii) x + 1, y + 2, z.] Hori et al.

[Cu(C15HF10O2)2]nC8H10 (n = 1, 2 and 4)

961

research papers Table 2 ˚ ) in (I)–(III). Comparison of selected bond lengths (A

Cu1—O1 Cu1—O2 Cu1—O3 Cu1—O4 C7—O1 C9—O2 C22—O3 C24—O4

(I)

(II)

(III)

1.9224 (12) 1.9073 (13)

1.9219 (9) 1.9061 (9)

1.274 (2) 1.271 (2)

1.2671 (16) 1.2670 (16)

1.921 (3) 1.917 (3) 1.913 (3) 1.921 (3) 1.271 (5) 1.263 (5) 1.263 (5) 1.270 (5)

Figure 2 The molecular structure of disolvate (II) at 120 K, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iii) x, y + 1, z + 1.]

The evaporation rates and starting concentrations showed no relationship with the formation of the pseudopolymorphs. It is noteworthy that crystals of (III) were occasionally obtained only in winter, while crystals of (II) were obtained throughout the year. In monosolvate (I), the asymmetric unit contains one half of the coordination complex and one half of a p-xylene molecule (Fig. 1). The complex is centrosymmetric and comprises one Cu2+ ion and two L ligands, giving a mononuclear Cu2+ complex with a square-planar coordination (Table 2). The p-xylene molecule is located on a crystallographic inversion centre. The symmetry-unique pentafluorophenyl groups (rings A and B; Fig. 1) are highly twisted with respect to the coordination plane, as can be seen from the respective C5—C6— C7—C8 and C8—C9—C10—C15 torsion angles of 55.0 (3) and 48.7 (3) . Disolvate (II) also has one half of the coordination complex in the asymmetric unit and one entire p-xylene molecule (Fig. 2). The geometry around the metal centre is also square planar (Table 2). The structures of the Cu(L)2 complex molecules in (I) and (II) are almost the same. The unique pentafluorophenyl groups (rings D and E; Fig. 2) in (II) are also highly twisted with respect to the coordination plane, with torsion angles C5—C6—C7—C8 = 68.39 (17) and C8—C9— C10—C15 = 66.47 (17) . On the other hand, tetrasolvate (III) includes the entire Cu(L)2 complex molecule and four p-xylene molecules in the asymmetric unit (Fig. 3). The geometry around the metal centre is square planar (Table 2). The Cu2+ coordination in all three complexes is thus very similar. The pentafluorophenyl groups (rings G, H, I and J; Fig. 3) in (III) again show a twisted orientation with respect to the coordination plane [torsion angles C5—C6—C7—C8 = 46.1 (7) , C8—C9—C10—C15 =

Figure 3 The molecular structure of tetrasolvate (III) at 100 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

962

Hori et al.

[Cu(C15HF10O2)2]nC8H10 (n = 1, 2 and 4)

Acta Cryst. (2014). C70, 960–964

research papers

Figure 4 A view of part of the crystal structure of (I) along the c axis. [Symmetry codes: (i) x + 2, y + 2, z; (ii) x + 1, y + 2, z; (iv) x 12, y + 32, z; (v) x + 32, y + 12, z.]

Figure 6

70.5 (6) , C20—C21—C22—C23 = 45.1 (7) and C23— C24—C25—C30 = 53.7 (6) ]. The twist angles of rings G and I are very similar, whereas those of rings H and J differ significantly, thus breaking the perfect inversion symmetry of complex (III). The structure is thus pseudocentrosymmetric with space group Pn. Because the Flack (1983) parameter refined to a value close to 0.5 [0.494 (13)], the structure is inversion twinned. The orientations of the pentafluorophenyl groups in (I)– (III) are flexibly twisted and stabilized by the p-xylene molecules through intermolecular arene–perfluoroarene interactions, as discussed below. In the crystal structure of (I) (Fig. 4), p-xylene ring C interacts closely with pentafluorophenyl ring Biv [symmetry code: (iv) x 12, y + 32, z] of the adjacent complex molecule ˚ ; CgX denotes the centroid of [CgC CgBiv = 3.4747 (12) A

Figure 5 A view of part of the crystal structure of (II). [Symmetry codes: (iii) x, y + 1, z + 1; (vi) x + 1, y, z; (vii) x + 1, y + 2, z + 1.] Acta Cryst. (2014). C70, 960–964

A view of part of the crystal structure of (III). [Symmetry codes: (vi) x + 1, y, z; (viii) x 12, y + 2, z 12; (ix) x 12, y + 1, z 12; (x) x 1, y, z.]

ring X]. The corresponding shortest perpendicular distance ˚. from the ring centroids to the adjacent planes is 3.3032 (9) A The p-xylene molecule further interacts with the opposite pentafluorophenyl group [ring Bv; symmetry code: (v) x + 32, y + 12, z] of the complex to give 1:2 sandwich structures through typical arene–perfluoroarene interactions. Furthermore, the p-xylene molecule is surrounded by the two coordination CuO4 sites of Cu(L)2, but no stacking formation is observed. The intermolecular distance of C11i— ˚ ; symmetry codes: F6i H17ii—C17ii [F6i C17ii = 3.239 (3) A (i) x + 2, y + 2, z; (ii) x + 1, y + 2, z] is slightly shorter than the standard value, showing that C—F H interactions between the complex and p-xylene molecules dominate the alternate arrangements. Remarkably short intermolecular distances are observed between pairs of ˚ for Cu1 F7iv and complex molecules, viz. 2.8243 (12) A i iv ˚ between the ˚ 2.8845 (18) A for O1 F7 [2.7267 (14) A i i i i i centroid of Cu1—O1 —C7 —C8 —C9 —O2 and atom F7iv], showing an interaction between the Cu2+ metal centre (+) and the fluorine substituent (). In the crystal structure of disolvate (II) (Fig. 5), the complex molecules overlap down the a axis, but the shortest inter˚ ] because molecular metal–metal distance is long [7.5688 (4) A the coordination planes are tilted. This allows the p-xylene molecules to stack alternately with the pentafluorophenyl groups of the complex along the a axis. p-Xylene ring F closely interacts with pentafluorophenyl ring D [CgF CgD = ˚ ]. The corresponding shortest perpendicular 3.7572 (9) A distance from the ring centroids to the adjacent planes is ˚ . Conversely, the p-xylene molecule further 3.5115 (7) A interacts with adjacent pentafluorophenyl ring Dvi [symmetry code: (vi) x + 1, y, z] to give 1:2 sandwich structures through arene–perfluoroarene interactions [CgF CgDvi = ˚ ]. The corresponding shortest perpendicular 3.8175 (9) A distance from the ring centroid to the adjacent plane is Hori et al.

[Cu(C15HF10O2)2]nC8H10 (n = 1, 2 and 4)

963

research papers ˚ . This clearly shows the arene–perfluoroarene 3.5678 (7) A stacking between the complex and p-xylene molecules (Fig. 5). ˚ A remarkably short intermolecular distance of 3.2669 (11) A vii is observed between the two complexes, viz. C4—F4 CgE [symmetry code: (vii) x + 1, y + 2, z + 1], indicating C— F (C6F5) interactions (Prasanna & Row, 2000). In the crystal structure of tetrasolvate (III) (Fig. 6), two kinds of situations are observed for the four p-xylene molecules. p-Xylenes C31–C38 (ring K) and C39–C46 (ring L) closely interact with rings H and J of the coordination complex through arene–perfluoroarene interactions, whereas p-xylenes C47–C54 (ring M) and C55–C62 (ring N) are close to the axial site of the Cu2+ ion, where a sufficiently wide cavity exists in the surrounding pentafluorophenyl groups, and weak metal interactions are dominant between them. The intermolecular distances between the two centroids of the pentafluorophenyl groups of the coordination complex and ˚ for the phenylene ring of p-xylene are 3.662 (3) A viii 1 CgH CgK [symmetry code: (viii) x 2, y + 2, z 12], ˚ for CgH CgLix [symmetry code: (ix) x 1, y + 1, 3.582 (3) A 2 1 ˚ for CgJ CgKx [symmetry code: (x) x 1, z 2], 3.556 (3) A ˚ for CgJ CgLx. On the other hand, the y, z] and 3.618 (3) A intermolecular distances between the centroid of the phenyl˚ for ene ring of p-xylene and the Cu2+ ion are 3.765 A x ˚ CgM Cu1 and 3.749 A for CgN Cu1. The slightly long metal distances suggest that p-xylene is large for the Cu2+ coordination centre. It is interesting that the perfluorinated coordination complex, Cu(L)2, encapsulates the aromatic guest molecules under different circ*mstances. The guest

964

Hori et al.

[Cu(C15HF10O2)2]nC8H10 (n = 1, 2 and 4)

encapsulation phenomenon should be attributed not only to the cavity effects on the crystal, but also to the fluorination effects of the complex. Accordingly, two kinds of p-xylene molecules produce alternate arrangements between rings K and N and also between rings L and M along the a axis. No remarkable interactions between the guest molecules are observed, and each guest molecule interacts with the host frameworks of the complex. This work was supported in part by a Kitasato University Research Grant for Young Researchers.

References Bruker (2013). APEX2, SAINT, SADABS and Generate Report. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Hori, A. (2012). Frontiers in Crystal Engineering, Vol. III, pp. 163–185. New York: John Wiley & Sons. Hori, A. & Arii, T. (2007). CrystEngComm, 9, 215–217. Hori, A. & Mizutani, M. (2009). Acta Cryst. C65, m415–m417. Hori, A., Nakajima, K., Akimoto, Y., Naganuma, K. & Yuge, H. (2014). CrystEngComm, 16, 8805–8817. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Patrick, C. R. & Prosser, G. S. (1960). Nature (London), 187, 1021. Prasanna, M. D. & Row, T. N. G. (2000). Cryst. Eng. 3, 135–154. Reichenbacher, K., Suss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2013). SHELXL2013. University of Go¨ttingen, Germany. Soldatov, D. V., Henegouwen, A. T., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 1626–1636. Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201. Williams, J. H. (1993). Acc. Chem. Res. 26, 593–598.

Acta Cryst. (2014). C70, 960–964

supporting information

supporting information Acta Cryst. (2014). C70, 960-964

[doi:10.1107/S2053229614020294]

Three p-xylene-solvated pseudopolymorphs of bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II) Akiko Hori, Kyosuke Nakajima and Hidetaka Yuge Computing details For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Generate Report (Bruker, 2013). (I) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O′]copper(II) p-xylene n-solvate Crystal data [Cu(C15HF10O2)2]·C8H10 Mr = 976.03 Orthorhombic, Pbca a = 11.1299 (10) Å b = 13.1194 (12) Å c = 23.797 (2) Å V = 3474.7 (5) Å3 Z=4 F(000) = 1924

Dx = 1.866 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5529 reflections θ = 2.5–27.9° µ = 0.78 mm−1 T = 120 K Block, green 0.40 × 0.25 × 0.05 mm

Data collection Bruker D8 goniometer diffractometer Radiation source: sealed tube Detector resolution: 8.3333 pixels mm-1 ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) Tmin = 0.85, Tmax = 0.96

18319 measured reflections 3967 independent reflections 3079 reflections with I > 2σ(I) Rint = 0.032 θmax = 27.5°, θmin = 2.5° h = −13→14 k = −17→8 l = −29→30

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.031 wR(F2) = 0.079 S = 1.02 3967 reflections 287 parameters 0 restraints

Acta Cryst. (2014). C70, 960-964

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.034P)2 + 2.4502P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.32 e Å−3 Δρmin = −0.51 e Å−3

sup-1

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cu1 O1 O2 C1 C2 C3 C4 C5 C6 C7 C8 H8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H17 C18 H18 C19 H19A H19B H19C F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

x

y

z

Uiso*/Ueq

1.0000 0.93725 (12) 1.03394 (12) 0.94676 (18) 0.90478 (19) 0.81489 (19) 0.77272 (17) 0.81892 (17) 0.90487 (17) 0.94789 (17) 0.99341 (17) 0.9997 1.03019 (16) 1.06826 (16) 1.17114 (17) 1.20394 (17) 1.13422 (19) 1.03214 (19) 1.00047 (18) 0.5794 (2) 0.4710 (2) 0.4500 0.3935 (2) 0.3202 0.6631 (2) 0.7464 0.6456 0.6516 1.03409 (11) 0.95024 (13) 0.77015 (12) 0.68619 (11) 0.77614 (11) 1.24348 (10) 1.30382 (11) 1.16566 (12) 0.96318 (13) 0.89763 (11)

1.0000 1.05604 (10) 0.87124 (10) 1.17824 (15) 1.24095 (15) 1.20624 (16) 1.10814 (17) 1.04540 (15) 1.07960 (14) 1.01486 (14) 0.91858 (14) 0.8973 0.85208 (14) 0.74599 (14) 0.70298 (15) 0.60359 (15) 0.54384 (15) 0.58454 (15) 0.68412 (15) 0.93958 (19) 0.9004 (2) 0.8318 0.95941 (19) 0.9306 0.8748 (2) 0.8892 0.8026 0.8904 1.21441 (9) 1.33428 (9) 1.26761 (10) 1.07418 (11) 0.95002 (9) 0.75845 (9) 0.56447 (10) 0.44773 (9) 0.52757 (10) 0.71906 (9)

0.0000 0.06863 (5) 0.03366 (5) 0.17217 (8) 0.21441 (8) 0.24955 (8) 0.24425 (8) 0.20293 (7) 0.16493 (7) 0.11687 (7) 0.12847 (7) 0.1665 0.08597 (7) 0.10140 (7) 0.07853 (7) 0.08938 (8) 0.12409 (8) 0.14762 (8) 0.13618 (8) 0.03250 (9) 0.01263 (9) 0.0210 −0.01907 (9) −0.0320 0.06726 (10) 0.0566 0.0606 0.1072 0.13854 (5) 0.22198 (5) 0.28942 (5) 0.27897 (5) 0.19926 (5) 0.04540 (5) 0.06636 (5) 0.13511 (5) 0.18134 (6) 0.15916 (5)

0.01473 (9) 0.0178 (3) 0.0188 (3) 0.0199 (4) 0.0243 (4) 0.0256 (5) 0.0241 (4) 0.0195 (4) 0.0172 (4) 0.0161 (4) 0.0180 (4) 0.022* 0.0162 (4) 0.0162 (4) 0.0188 (4) 0.0213 (4) 0.0226 (4) 0.0228 (4) 0.0201 (4) 0.0349 (6) 0.0357 (6) 0.043* 0.0361 (6) 0.043* 0.0480 (7) 0.072* 0.072* 0.072* 0.0271 (3) 0.0358 (3) 0.0372 (3) 0.0344 (3) 0.0274 (3) 0.0295 (3) 0.0335 (3) 0.0339 (3) 0.0392 (3) 0.0326 (3)

Acta Cryst. (2014). C70, 960-964

sup-2

supporting information Atomic displacement parameters (Å2)

Cu1 O1 O2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

U11

U22

U33

U12

U13

U23

0.01780 (16) 0.0209 (7) 0.0252 (7) 0.0229 (10) 0.0348 (12) 0.0331 (12) 0.0191 (10) 0.0182 (9) 0.0190 (9) 0.0146 (9) 0.0211 (10) 0.0141 (9) 0.0188 (9) 0.0170 (9) 0.0179 (10) 0.0302 (11) 0.0297 (11) 0.0213 (10) 0.0331 (12) 0.0358 (13) 0.0304 (12) 0.0469 (16) 0.0352 (7) 0.0580 (9) 0.0511 (8) 0.0281 (7) 0.0279 (7) 0.0223 (6) 0.0223 (6) 0.0439 (8) 0.0477 (8) 0.0306 (7)

0.01596 (15) 0.0196 (7) 0.0182 (6) 0.0218 (10) 0.0200 (10) 0.0315 (11) 0.0404 (12) 0.0251 (10) 0.0195 (9) 0.0194 (9) 0.0198 (9) 0.0182 (9) 0.0171 (9) 0.0234 (10) 0.0253 (10) 0.0160 (9) 0.0187 (10) 0.0207 (9) 0.0474 (14) 0.0422 (13) 0.0480 (14) 0.0608 (18) 0.0217 (6) 0.0175 (6) 0.0417 (8) 0.0564 (9) 0.0303 (7) 0.0314 (7) 0.0351 (7) 0.0184 (6) 0.0247 (6) 0.0261 (6)

0.01044 (15) 0.0129 (6) 0.0128 (6) 0.0150 (9) 0.0182 (9) 0.0122 (8) 0.0129 (9) 0.0153 (9) 0.0130 (8) 0.0142 (8) 0.0131 (8) 0.0162 (8) 0.0128 (8) 0.0160 (9) 0.0209 (9) 0.0214 (9) 0.0200 (9) 0.0183 (9) 0.0242 (11) 0.0289 (11) 0.0299 (11) 0.0363 (13) 0.0244 (6) 0.0318 (7) 0.0188 (6) 0.0186 (6) 0.0242 (6) 0.0347 (7) 0.0429 (7) 0.0395 (7) 0.0453 (8) 0.0409 (7)

0.00013 (13) 0.0028 (6) 0.0008 (6) 0.0035 (8) 0.0074 (9) 0.0145 (10) 0.0063 (9) 0.0017 (8) 0.0052 (8) −0.0014 (7) 0.0009 (8) −0.0030 (7) −0.0016 (8) −0.0026 (8) 0.0054 (8) 0.0035 (9) −0.0049 (9) 0.0008 (8) −0.0127 (11) −0.0184 (11) −0.0192 (11) −0.0142 (14) −0.0042 (5) 0.0024 (6) 0.0209 (7) 0.0016 (6) −0.0073 (5) −0.0007 (5) 0.0125 (6) 0.0077 (6) −0.0042 (6) 0.0027 (5)

0.00063 (12) 0.0015 (5) 0.0003 (5) −0.0003 (8) −0.0076 (8) −0.0034 (8) 0.0004 (7) −0.0019 (7) −0.0014 (7) 0.0010 (7) 0.0008 (7) −0.0006 (7) −0.0024 (7) −0.0001 (7) −0.0040 (8) −0.0090 (8) 0.0012 (8) 0.0025 (8) 0.0125 (9) 0.0172 (10) 0.0122 (10) 0.0060 (12) 0.0052 (5) −0.0036 (6) 0.0004 (6) 0.0090 (5) 0.0060 (5) 0.0112 (5) 0.0028 (5) −0.0094 (6) 0.0158 (7) 0.0201 (6)

0.00146 (12) 0.0015 (5) 0.0021 (5) 0.0035 (8) −0.0006 (8) −0.0046 (8) 0.0023 (8) 0.0014 (8) 0.0014 (7) 0.0003 (7) 0.0018 (7) 0.0029 (7) 0.0001 (7) 0.0013 (8) −0.0050 (8) 0.0008 (8) 0.0056 (8) 0.0003 (7) −0.0146 (10) −0.0143 (10) −0.0204 (11) −0.0056 (13) 0.0025 (5) −0.0047 (5) −0.0101 (5) −0.0018 (6) −0.0007 (5) 0.0071 (6) −0.0018 (6) 0.0036 (5) 0.0154 (6) 0.0071 (6)

Geometric parameters (Å, º) Cu1—O2 Cu1—O2i Cu1—O1 Cu1—O1i O1—C7 O2—C9 C1—F1 C1—C2 C1—C6 C2—F2

Acta Cryst. (2014). C70, 960-964

1.9073 (13) 1.9074 (13) 1.9224 (12) 1.9225 (12) 1.274 (2) 1.271 (2) 1.345 (2) 1.380 (3) 1.386 (3) 1.337 (2)

C10—C15 C10—C11 C11—F6 C11—C12 C12—F7 C12—C13 C13—F8 C13—C14 C14—F9 C14—C15

1.383 (3) 1.388 (3) 1.342 (2) 1.378 (3) 1.341 (2) 1.378 (3) 1.334 (2) 1.375 (3) 1.339 (2) 1.380 (3)

sup-3

supporting information C2—C3 C3—F3 C3—C4 C4—F4 C4—C5 C5—F5 C5—C6 C6—C7 C7—C8 C8—C9 C8—H8 C9—C10

1.381 (3) 1.340 (2) 1.376 (3) 1.345 (2) 1.382 (3) 1.342 (2) 1.391 (3) 1.503 (2) 1.389 (3) 1.397 (3) 0.9500 1.501 (3)

C15—F10 C16—C17 C16—C18ii C16—C19 C17—C18 C17—H17 C18—C16ii C18—H18 C19—H19A C19—H19B C19—H19C

1.349 (2) 1.395 (3) 1.396 (3) 1.508 (4) 1.383 (4) 0.9500 1.396 (3) 0.9500 0.9800 0.9800 0.9800

O2—Cu1—O2i O2—Cu1—O1 O2i—Cu1—O1 O2—Cu1—O1i O2i—Cu1—O1i O1—Cu1—O1i C7—O1—Cu1 C9—O2—Cu1 F1—C1—C2 F1—C1—C6 C2—C1—C6 F2—C2—C1 F2—C2—C3 C1—C2—C3 F3—C3—C4 F3—C3—C2 C4—C3—C2 F4—C4—C3 F4—C4—C5 C3—C4—C5 F5—C5—C4 F5—C5—C6 C4—C5—C6 C1—C6—C5 C1—C6—C7 C5—C6—C7 O1—C7—C8 O1—C7—C6 C8—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8 O2—C9—C8 O2—C9—C10

180.0 93.09 (5) 86.91 (5) 86.91 (5) 93.09 (5) 180.0 124.71 (12) 125.46 (12) 117.87 (18) 119.89 (17) 122.21 (18) 121.06 (19) 119.63 (18) 119.32 (19) 120.01 (19) 119.98 (19) 120.00 (18) 119.86 (18) 120.43 (19) 119.71 (18) 118.03 (17) 120.18 (17) 121.77 (19) 116.86 (17) 121.00 (17) 122.11 (17) 126.78 (17) 114.60 (16) 118.62 (16) 122.08 (17) 119.0 119.0 126.53 (17) 114.44 (16)

C8—C9—C10 C15—C10—C11 C15—C10—C9 C11—C10—C9 F6—C11—C12 F6—C11—C10 C12—C11—C10 F7—C12—C13 F7—C12—C11 C13—C12—C11 F8—C13—C14 F8—C13—C12 C14—C13—C12 F9—C14—C13 F9—C14—C15 C13—C14—C15 F10—C15—C14 F10—C15—C10 C14—C15—C10 C17—C16—C18ii C17—C16—C19 C18ii—C16—C19 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C16ii C17—C18—H18 C16ii—C18—H18 C16—C19—H19A C16—C19—H19B H19A—C19—H19B C16—C19—H19C H19A—C19—H19C H19B—C19—H19C

119.02 (16) 116.50 (17) 122.45 (17) 120.95 (16) 117.66 (17) 120.34 (17) 121.99 (18) 119.59 (18) 120.33 (18) 120.08 (18) 120.25 (18) 120.50 (18) 119.24 (18) 120.08 (18) 120.02 (19) 119.90 (18) 117.29 (17) 120.41 (17) 122.28 (18) 117.4 (2) 120.8 (2) 121.8 (2) 121.2 (2) 119.4 119.4 121.4 (2) 119.3 119.3 109.5 109.5 109.5 109.5 109.5 109.5

Acta Cryst. (2014). C70, 960-964

sup-4

supporting information F1—C1—C2—F2 C6—C1—C2—F2 F1—C1—C2—C3 C6—C1—C2—C3 F2—C2—C3—F3 C1—C2—C3—F3 F2—C2—C3—C4 C1—C2—C3—C4 F3—C3—C4—F4 C2—C3—C4—F4 F3—C3—C4—C5 C2—C3—C4—C5 F4—C4—C5—F5 C3—C4—C5—F5 F4—C4—C5—C6 C3—C4—C5—C6 F1—C1—C6—C5 C2—C1—C6—C5 F1—C1—C6—C7 C2—C1—C6—C7 F5—C5—C6—C1 C4—C5—C6—C1 F5—C5—C6—C7 C4—C5—C6—C7 Cu1—O1—C7—C8 Cu1—O1—C7—C6 C1—C6—C7—O1 C5—C6—C7—O1 C1—C6—C7—C8 C5—C6—C7—C8 O1—C7—C8—C9 C6—C7—C8—C9 Cu1—O2—C9—C8 Cu1—O2—C9—C10

−0.6 (3) 177.15 (17) 179.80 (17) −2.4 (3) 2.9 (3) −177.54 (17) −176.04 (17) 3.6 (3) 0.3 (3) 179.21 (17) 179.76 (17) −1.3 (3) −1.0 (3) 179.60 (17) 177.32 (17) −2.1 (3) 176.82 (16) −0.9 (3) −5.3 (3) 177.01 (17) −178.57 (16) 3.2 (3) 3.6 (3) −174.69 (17) −7.8 (3) 172.68 (12) −53.2 (2) 124.60 (19) 127.2 (2) −55.0 (3) −2.5 (3) 177.09 (17) 4.4 (3) −176.49 (11)

C7—C8—C9—O2 C7—C8—C9—C10 O2—C9—C10—C15 C8—C9—C10—C15 O2—C9—C10—C11 C8—C9—C10—C11 C15—C10—C11—F6 C9—C10—C11—F6 C15—C10—C11—C12 C9—C10—C11—C12 F6—C11—C12—F7 C10—C11—C12—F7 F6—C11—C12—C13 C10—C11—C12—C13 F7—C12—C13—F8 C11—C12—C13—F8 F7—C12—C13—C14 C11—C12—C13—C14 F8—C13—C14—F9 C12—C13—C14—F9 F8—C13—C14—C15 C12—C13—C14—C15 F9—C14—C15—F10 C13—C14—C15—F10 F9—C14—C15—C10 C13—C14—C15—C10 C11—C10—C15—F10 C9—C10—C15—F10 C11—C10—C15—C14 C9—C10—C15—C14 C18ii—C16—C17—C18 C19—C16—C17—C18 C16—C17—C18—C16ii

4.3 (3) −174.69 (17) −130.44 (19) 48.7 (3) 45.9 (2) −134.99 (19) −178.43 (16) 5.1 (3) 0.5 (3) −175.97 (17) −1.2 (3) 179.76 (17) 178.64 (17) −0.4 (3) 0.3 (3) −179.60 (17) 179.86 (17) 0.0 (3) −0.6 (3) 179.84 (18) 179.77 (18) 0.2 (3) −1.5 (3) 178.18 (17) −179.65 (18) 0.0 (3) −178.48 (16) −2.0 (3) −0.4 (3) 176.09 (18) −0.1 (3) 179.7 (2) 0.1 (4)

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+2, −z.

(II) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O′]copper(II) p-xylene disolvate Crystal data [Cu(C15HF10O2)2]·2C8H10 Mr = 1082.19 Triclinic, P1 a = 7.5688 (4) Å b = 11.8976 (6) Å c = 12.2578 (6) Å α = 90.7758 (5)° β = 99.1187 (5)° γ = 105.8474 (5)° V = 1046.57 (9) Å3

Acta Cryst. (2014). C70, 960-964

Z=1 F(000) = 539 Dx = 1.717 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8584 reflections θ = 2.4–27.9° µ = 0.66 mm−1 T = 120 K Prismatic, green 0.40 × 0.40 × 0.20 mm

sup-5

supporting information Data collection Bruker D8 goniometer diffractometer Radiation source: sealed tube Detector resolution: 8.3333 pixels mm-1 ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) Tmin = 0.81, Tmax = 0.88

12038 measured reflections 4714 independent reflections 4520 reflections with I > 2σ(I) Rint = 0.018 θmax = 27.5°, θmin = 2.4° h = −9→9 k = −15→15 l = −15→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.027 wR(F2) = 0.074 S = 1.03 4714 reflections 324 parameters 0 restraints

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0387P)2 + 0.5676P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.35 e Å−3 Δρmin = −0.50 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cu1 O1 O2 C1 C2 C3 C4 C5 C6 C7 C8 H8 C9 C10 C11 C12 C13 C14 C15 C16

x

y

z

Uiso*/Ueq

0.0000 0.14839 (13) 0.15820 (13) 0.46491 (18) 0.54627 (19) 0.5452 (2) 0.4664 (2) 0.38986 (19) 0.38537 (17) 0.29598 (17) 0.38151 (18) 0.4935 0.30682 (17) 0.40891 (17) 0.32911 (18) 0.4171 (2) 0.5881 (2) 0.67085 (19) 0.58144 (18) 0.9590 (2)

0.5000 0.63204 (8) 0.53465 (8) 0.77779 (12) 0.86513 (13) 0.97902 (13) 1.00451 (12) 0.91660 (12) 0.80111 (11) 0.70464 (11) 0.70311 (12) 0.7619 0.61753 (11) 0.61937 (11) 0.63661 (12) 0.63262 (13) 0.60970 (12) 0.59151 (12) 0.59794 (11) 0.78907 (15)

0.5000 0.59651 (8) 0.39122 (8) 0.77070 (11) 0.85354 (11) 0.83293 (12) 0.73052 (13) 0.64841 (11) 0.66666 (11) 0.57786 (10) 0.48517 (11) 0.4809 0.39874 (10) 0.30254 (10) 0.19637 (11) 0.10641 (11) 0.12160 (12) 0.22611 (12) 0.31516 (11) 0.79456 (13)

0.01409 (7) 0.01741 (19) 0.01758 (19) 0.0174 (3) 0.0212 (3) 0.0242 (3) 0.0236 (3) 0.0195 (3) 0.0153 (2) 0.0149 (2) 0.0180 (3) 0.022* 0.0145 (2) 0.0147 (2) 0.0180 (3) 0.0214 (3) 0.0218 (3) 0.0206 (3) 0.0176 (3) 0.0273 (3)

Acta Cryst. (2014). C70, 960-964

sup-6

supporting information C17 H17 C18 H18 C19 C20 H20 C21 H21 C22 H22A H22B H22C C23 H23A H23B H23C F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1.0335 (2) 1.0787 1.0431 (2) 1.0948 0.9785 (2) 0.9046 (2) 0.8600 0.8949 (2) 0.8436 0.9465 (3) 0.9982 1.0174 0.8157 0.9901 (3) 1.0317 0.8670 1.0790 0.46985 (13) 0.62668 (13) 0.62127 (15) 0.46457 (16) 0.31611 (14) 0.16467 (12) 0.33637 (14) 0.67395 (14) 0.83453 (12) 0.66593 (12)

0.88873 (18) 0.8807 0.99955 (17) 1.0658 1.01581 (15) 0.91619 (14) 0.9244 0.80516 (14) 0.7388 0.66842 (17) 0.6744 0.6305 0.6218 1.13618 (17) 1.1937 1.1385 1.1547 0.66826 (7) 0.84124 (9) 1.06451 (8) 1.11511 (8) 0.94499 (8) 0.66027 (9) 0.64936 (10) 0.60468 (9) 0.56737 (9) 0.58023 (8)

0.86553 (14) 0.9410 0.82876 (16) 0.8795 0.71881 (15) 0.64705 (14) 0.5715 0.68419 (13) 0.6335 0.83434 (15) 0.9134 0.7930 0.8225 0.6788 (2) 0.7421 0.6411 0.6272 0.79131 (7) 0.95225 (7) 0.91226 (8) 0.71103 (9) 0.54917 (7) 0.17904 (7) 0.00542 (7) 0.03515 (8) 0.24119 (8) 0.41631 (7)

0.0356 (4) 0.043* 0.0387 (4) 0.046* 0.0327 (4) 0.0288 (3) 0.035* 0.0267 (3) 0.032* 0.0361 (4) 0.054* 0.054* 0.054* 0.0502 (5) 0.075* 0.075* 0.075* 0.02477 (18) 0.0312 (2) 0.0365 (2) 0.0378 (2) 0.0292 (2) 0.0288 (2) 0.0345 (2) 0.0328 (2) 0.0317 (2) 0.0274 (2)

Atomic displacement parameters (Å2)

Cu1 O1 O2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

U11

U22

U33

U12

U13

U23

0.01255 (11) 0.0162 (4) 0.0154 (4) 0.0175 (6) 0.0196 (6) 0.0239 (7) 0.0277 (7) 0.0205 (6) 0.0135 (6) 0.0150 (6) 0.0162 (6) 0.0145 (6) 0.0148 (6) 0.0149 (6) 0.0230 (7) 0.0251 (7) 0.0172 (6)

0.01641 (11) 0.0189 (4) 0.0209 (5) 0.0170 (6) 0.0263 (7) 0.0212 (7) 0.0141 (6) 0.0190 (6) 0.0160 (6) 0.0148 (6) 0.0181 (6) 0.0172 (6) 0.0134 (6) 0.0214 (6) 0.0261 (7) 0.0220 (7) 0.0192 (6)

0.01096 (11) 0.0145 (4) 0.0136 (4) 0.0171 (6) 0.0147 (6) 0.0219 (7) 0.0275 (7) 0.0178 (6) 0.0149 (6) 0.0138 (6) 0.0169 (6) 0.0128 (6) 0.0146 (6) 0.0169 (6) 0.0132 (6) 0.0196 (7) 0.0278 (7)

−0.00086 (8) −0.0011 (4) −0.0010 (4) 0.0032 (5) 0.0028 (5) −0.0017 (5) 0.0028 (5) 0.0035 (5) 0.0006 (5) 0.0033 (5) −0.0015 (5) 0.0047 (5) 0.0003 (4) 0.0026 (5) 0.0024 (5) 0.0031 (5) 0.0054 (5)

0.00396 (8) 0.0057 (3) 0.0046 (3) 0.0041 (5) 0.0009 (5) 0.0025 (6) 0.0062 (6) 0.0028 (5) 0.0045 (5) 0.0009 (5) 0.0058 (5) 0.0040 (4) 0.0053 (5) 0.0048 (5) 0.0049 (5) 0.0139 (5) 0.0106 (5)

−0.00205 (8) −0.0031 (4) −0.0017 (4) 0.0003 (5) −0.0024 (5) −0.0099 (5) −0.0011 (5) 0.0019 (5) −0.0018 (5) −0.0001 (5) −0.0009 (5) 0.0026 (5) −0.0004 (4) 0.0004 (5) 0.0009 (5) −0.0011 (5) 0.0028 (5)

Acta Cryst. (2014). C70, 960-964

sup-7

supporting information C15 C16 C17 C18 C19 C20 C21 C22 C23 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

0.0184 (6) 0.0190 (7) 0.0279 (8) 0.0294 (8) 0.0225 (7) 0.0253 (7) 0.0244 (7) 0.0369 (9) 0.0481 (11) 0.0342 (5) 0.0349 (5) 0.0438 (6) 0.0563 (6) 0.0399 (5) 0.0181 (4) 0.0328 (5) 0.0363 (5) 0.0226 (4) 0.0237 (4)

0.0170 (6) 0.0402 (9) 0.0535 (11) 0.0424 (10) 0.0322 (8) 0.0345 (8) 0.0320 (8) 0.0466 (10) 0.0311 (9) 0.0189 (4) 0.0371 (5) 0.0272 (5) 0.0137 (4) 0.0241 (4) 0.0506 (6) 0.0578 (6) 0.0422 (5) 0.0392 (5) 0.0414 (5)

0.0172 (6) 0.0247 (7) 0.0227 (8) 0.0376 (9) 0.0404 (9) 0.0258 (8) 0.0235 (7) 0.0282 (8) 0.0640 (14) 0.0204 (4) 0.0156 (4) 0.0288 (5) 0.0402 (6) 0.0216 (4) 0.0211 (4) 0.0127 (4) 0.0258 (5) 0.0417 (5) 0.0208 (4)

0.0036 (5) 0.0116 (6) 0.0113 (7) 0.0055 (7) 0.0070 (6) 0.0109 (6) 0.0098 (6) 0.0173 (8) 0.0086 (8) 0.0082 (3) 0.0060 (4) −0.0014 (4) 0.0064 (4) 0.0093 (4) 0.0140 (4) 0.0112 (5) 0.0111 (4) 0.0165 (4) 0.0149 (4)

0.0048 (5) 0.0039 (6) −0.0025 (6) −0.0044 (7) −0.0010 (7) −0.0016 (6) 0.0004 (6) 0.0060 (7) −0.0074 (10) 0.0006 (3) −0.0057 (4) −0.0011 (4) 0.0051 (5) −0.0018 (4) 0.0049 (3) 0.0057 (4) 0.0221 (4) 0.0156 (4) 0.0039 (3)

0.0032 (5) −0.0028 (6) −0.0076 (7) −0.0210 (8) −0.0085 (7) −0.0044 (6) −0.0081 (6) 0.0047 (7) −0.0082 (9) 0.0019 (3) −0.0024 (4) −0.0156 (4) −0.0010 (4) 0.0048 (3) 0.0077 (4) 0.0060 (4) 0.0008 (4) 0.0092 (4) 0.0087 (4)

Geometric parameters (Å, º) Cu1—O2i Cu1—O2 Cu1—O1 Cu1—O1i O1—C7 O2—C9 C1—F1 C1—C2 C1—C6 C2—F2 C2—C3 C3—F3 C3—C4 C4—F4 C4—C5 C5—F5 C5—C6 C6—C7 C7—C8 C8—C9 C8—H8 C9—C10 C10—C15 C10—C11 C11—F6 C11—C12

Acta Cryst. (2014). C70, 960-964

1.9061 (9) 1.9061 (9) 1.9219 (9) 1.9219 (9) 1.2671 (16) 1.2670 (16) 1.3401 (15) 1.3834 (19) 1.3868 (19) 1.3363 (16) 1.384 (2) 1.3370 (16) 1.377 (2) 1.3440 (16) 1.378 (2) 1.3433 (16) 1.3872 (19) 1.5061 (17) 1.3962 (18) 1.3947 (18) 0.9500 1.5061 (17) 1.3832 (18) 1.3878 (18) 1.3351 (16) 1.3821 (19)

C12—F7 C12—C13 C13—F8 C13—C14 C14—F9 C14—C15 C15—F10 C16—C17 C16—C21 C16—C22 C17—C18 C17—H17 C18—C19 C18—H18 C19—C20 C19—C23 C20—C21 C20—H20 C21—H21 C22—H22A C22—H22B C22—H22C C23—H23A C23—H23B C23—H23C

1.3337 (16) 1.379 (2) 1.3365 (15) 1.381 (2) 1.3322 (16) 1.3840 (19) 1.3491 (16) 1.390 (2) 1.397 (2) 1.506 (2) 1.386 (3) 0.9500 1.394 (3) 0.9500 1.395 (2) 1.504 (3) 1.390 (2) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

sup-8

supporting information O2i—Cu1—O2 O2i—Cu1—O1 O2—Cu1—O1 O2i—Cu1—O1i O2—Cu1—O1i O1—Cu1—O1i C7—O1—Cu1 C9—O2—Cu1 F1—C1—C2 F1—C1—C6 C2—C1—C6 F2—C2—C1 F2—C2—C3 C1—C2—C3 F3—C3—C4 F3—C3—C2 C4—C3—C2 F4—C4—C3 F4—C4—C5 C3—C4—C5 F5—C5—C4 F5—C5—C6 C4—C5—C6 C1—C6—C5 C1—C6—C7 C5—C6—C7 O1—C7—C8 O1—C7—C6 C8—C7—C6 C9—C8—C7 C9—C8—H8 C7—C8—H8 O2—C9—C8 O2—C9—C10 C8—C9—C10 C15—C10—C11 C15—C10—C9 C11—C10—C9 F6—C11—C12 F6—C11—C10 C12—C11—C10 F7—C12—C13

180.0 87.02 (4) 92.98 (4) 92.98 (4) 87.02 (4) 180.00 (6) 125.65 (8) 125.98 (8) 118.42 (12) 119.50 (12) 122.04 (13) 121.07 (13) 119.80 (13) 119.13 (13) 119.91 (14) 120.08 (14) 120.01 (13) 119.84 (13) 120.26 (13) 119.90 (13) 118.22 (12) 120.08 (12) 121.69 (13) 117.20 (12) 121.24 (12) 121.55 (12) 126.72 (12) 115.16 (11) 118.12 (11) 121.75 (12) 119.1 119.1 126.86 (12) 114.19 (11) 118.94 (11) 117.23 (12) 121.49 (12) 121.20 (12) 117.99 (12) 120.15 (12) 121.84 (13) 120.17 (12)

F7—C12—C11 C13—C12—C11 F8—C13—C12 F8—C13—C14 C12—C13—C14 F9—C14—C13 F9—C14—C15 C13—C14—C15 F10—C15—C10 F10—C15—C14 C10—C15—C14 C17—C16—C21 C17—C16—C22 C21—C16—C22 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18 C19—C18—H18 C18—C19—C20 C18—C19—C23 C20—C19—C23 C21—C20—C19 C21—C20—H20 C19—C20—H20 C20—C21—C16 C20—C21—H21 C16—C21—H21 C16—C22—H22A C16—C22—H22B H22A—C22—H22B C16—C22—H22C H22A—C22—H22C H22B—C22—H22C C19—C23—H23A C19—C23—H23B H23A—C23—H23B C19—C23—H23C H23A—C23—H23C H23B—C23—H23C

120.33 (13) 119.49 (13) 120.08 (13) 119.82 (13) 120.10 (12) 120.47 (13) 120.21 (13) 119.32 (13) 119.99 (12) 118.00 (12) 122.00 (13) 117.23 (16) 121.75 (15) 121.02 (15) 121.55 (16) 119.2 119.2 121.34 (16) 119.3 119.3 117.39 (16) 121.31 (16) 121.31 (17) 121.14 (16) 119.4 119.4 121.36 (15) 119.3 119.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

F1—C1—C2—F2 C6—C1—C2—F2 F1—C1—C2—C3 C6—C1—C2—C3

−0.6 (2) −178.13 (12) 178.87 (12) 1.3 (2)

C8—C9—C10—C15 O2—C9—C10—C11 C8—C9—C10—C11 C15—C10—C11—F6

66.47 (17) 63.47 (16) −116.96 (14) −178.50 (12)

Acta Cryst. (2014). C70, 960-964

sup-9

supporting information F2—C2—C3—F3 C1—C2—C3—F3 F2—C2—C3—C4 C1—C2—C3—C4 F3—C3—C4—F4 C2—C3—C4—F4 F3—C3—C4—C5 C2—C3—C4—C5 F4—C4—C5—F5 C3—C4—C5—F5 F4—C4—C5—C6 C3—C4—C5—C6 F1—C1—C6—C5 C2—C1—C6—C5 F1—C1—C6—C7 C2—C1—C6—C7 F5—C5—C6—C1 C4—C5—C6—C1 F5—C5—C6—C7 C4—C5—C6—C7 Cu1—O1—C7—C8 Cu1—O1—C7—C6 C1—C6—C7—O1 C5—C6—C7—O1 C1—C6—C7—C8 C5—C6—C7—C8 O1—C7—C8—C9 C6—C7—C8—C9 Cu1—O2—C9—C8 Cu1—O2—C9—C10 C7—C8—C9—O2 C7—C8—C9—C10 O2—C9—C10—C15

−1.3 (2) 179.25 (13) 178.48 (13) −1.0 (2) −0.7 (2) 179.55 (13) 179.31 (13) −0.5 (2) 0.7 (2) −179.26 (13) −178.37 (13) 1.7 (2) −177.72 (12) −0.2 (2) 2.99 (19) −179.46 (12) 179.62 (12) −1.3 (2) −1.10 (19) 177.97 (13) −0.77 (19) 179.54 (8) 67.37 (16) −111.89 (14) −112.35 (15) 68.39 (17) 1.0 (2) −179.35 (12) −2.86 (19) 176.67 (8) 1.0 (2) −178.49 (12) −113.10 (14)

C9—C10—C11—F6 C15—C10—C11—C12 C9—C10—C11—C12 F6—C11—C12—F7 C10—C11—C12—F7 F6—C11—C12—C13 C10—C11—C12—C13 F7—C12—C13—F8 C11—C12—C13—F8 F7—C12—C13—C14 C11—C12—C13—C14 F8—C13—C14—F9 C12—C13—C14—F9 F8—C13—C14—C15 C12—C13—C14—C15 C11—C10—C15—F10 C9—C10—C15—F10 C11—C10—C15—C14 C9—C10—C15—C14 F9—C14—C15—F10 C13—C14—C15—F10 F9—C14—C15—C10 C13—C14—C15—C10 C21—C16—C17—C18 C22—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C20 C17—C18—C19—C23 C18—C19—C20—C21 C23—C19—C20—C21 C19—C20—C21—C16 C17—C16—C21—C20 C22—C16—C21—C20

4.78 (19) 0.1 (2) −176.66 (12) −1.5 (2) 179.88 (13) 179.28 (13) 0.7 (2) 0.3 (2) 179.47 (13) −179.51 (13) −0.3 (2) −0.9 (2) 178.85 (13) 179.44 (12) −0.8 (2) −179.86 (12) −3.15 (19) −1.19 (19) 175.52 (12) 0.63 (19) −179.75 (12) −178.06 (12) 1.6 (2) 0.3 (2) −179.39 (16) 0.0 (3) −0.3 (3) −179.65 (18) 0.4 (2) 179.72 (17) −0.1 (2) −0.2 (2) 179.45 (15)

Symmetry code: (i) −x, −y+1, −z+1.

(III) Bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato-κ2O,O′]copper(II) p-xylene tetrasolvate Crystal data [Cu(C15HF10O2)2]·4C8H10 Mr = 1294.49 Monoclinic, Pn a = 13.8034 (16) Å b = 14.2545 (17) Å c = 14.9313 (17) Å β = 108.0612 (13)° V = 2793.1 (6) Å3 Z=2

Acta Cryst. (2014). C70, 960-964

F(000) = 1310 Dx = 1.539 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8297 reflections θ = 2.3–27.0° µ = 0.51 mm−1 T = 100 K Block, green 0.22 × 0.15 × 0.10 mm

sup-10

supporting information Data collection Bruker D8 goniometer diffractometer Radiation source: sealed tube Detector resolution: 8.3333 pixels mm-1 ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) Tmin = 0.91, Tmax = 0.95

31741 measured reflections 12693 independent reflections 10311 reflections with I > 2σ(I) Rint = 0.034 θmax = 27.5°, θmin = 2.3° h = −17→17 k = −18→18 l = −19→19

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.093 S = 1.03 12693 reflections 793 parameters 2 restraints Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.044P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.37 e Å−3 Δρmin = −0.39 e Å−3 Absolute structure: Refined as an inversion twin; 6303 Bijvoet pairs (Parsons et al., 2013) Absolute structure parameter: 0.494 (13)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refined as a 2-component inversion twin. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cu1 O1 O2 O3 O4 C1 C2 C3 C4 C5 C6 C7 C8 H8 C9 C10 C11 C12

x

y

z

Uiso*/Ueq

0.17563 (6) 0.1062 (3) 0.2610 (3) 0.2451 (3) 0.0897 (2) −0.0458 (4) −0.1050 (4) −0.0621 (4) 0.0391 (4) 0.0955 (4) 0.0562 (4) 0.1192 (4) 0.1838 (4) 0.1817 0.2517 (4) 0.3214 (4) 0.4261 (4) 0.4907 (4)

0.75464 (4) 0.8731 (2) 0.7822 (2) 0.63676 (19) 0.7262 (2) 1.0168 (3) 1.0953 (3) 1.1826 (3) 1.1907 (3) 1.1111 (3) 1.0217 (3) 0.9343 (3) 0.9277 (3) 0.9754 0.8529 (3) 0.8542 (3) 0.8650 (3) 0.8627 (3)

0.19831 (6) 0.1724 (2) 0.1220 (2) 0.2239 (2) 0.2742 (2) 0.1043 (4) 0.0999 (4) 0.1042 (4) 0.1087 (4) 0.1107 (4) 0.1088 (3) 0.1152 (3) 0.0602 (3) 0.0152 0.0690 (3) 0.0087 (4) 0.0487 (4) −0.0053 (4)

0.02026 (11) 0.0205 (7) 0.0226 (7) 0.0219 (7) 0.0215 (7) 0.0246 (11) 0.0276 (11) 0.0304 (12) 0.0303 (12) 0.0253 (11) 0.0198 (10) 0.0194 (10) 0.0206 (10) 0.025* 0.0192 (11) 0.0196 (11) 0.0270 (11) 0.0298 (11)

Acta Cryst. (2014). C70, 960-964

sup-11

supporting information C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 H23 C24 C25 C26 C27 C28 C29 C30 C31 C32 H32 C33 H33 C34 C35 H35 C36 H36 C37 H37A H37B H37C C38 H38A H38B H38C C39 C40 H40 C41 H41 C42 C43 H43 C44 H44 C45

0.4523 (4) 0.3492 (4) 0.2850 (4) 0.3974 (4) 0.4566 (4) 0.4146 (4) 0.3136 (5) 0.2548 (4) 0.2948 (4) 0.2317 (3) 0.1634 (4) 0.1622 0.0976 (4) 0.0242 (4) −0.0789 (4) −0.1470 (4) −0.1117 (4) −0.0102 (4) 0.0561 (4) 0.9933 (4) 1.0225 (4) 1.0928 0.9536 (4) 0.9774 0.8499 (4) 0.8190 (4) 0.7486 0.8882 (4) 0.8650 1.0683 (5) 1.1084 1.0321 1.1139 0.7730 (5) 0.7904 0.7045 0.7748 0.9941 (4) 1.0280 (4) 1.0991 0.9618 (4) 0.9884 0.8585 (4) 0.8225 (4) 0.7513 0.8889 (5) 0.8627 1.0682 (5)

Acta Cryst. (2014). C70, 960-964

0.8471 (3) 0.8356 (3) 0.8402 (3) 0.4942 (3) 0.4159 (4) 0.3288 (3) 0.3185 (3) 0.3976 (3) 0.4874 (3) 0.5739 (3) 0.5788 (3) 0.5285 0.6535 (3) 0.6498 (3) 0.6637 (3) 0.6624 (3) 0.6480 (3) 0.6333 (3) 0.6337 (3) 0.8872 (3) 0.8861 (3) 0.8797 0.8941 (3) 0.8936 0.9029 (3) 0.9030 (3) 0.9089 0.8948 (4) 0.8943 0.8783 (5) 0.8209 0.8754 0.9328 0.9103 (4) 0.9640 0.9190 0.8527 0.3827 (3) 0.3933 (3) 0.3915 0.4066 (3) 0.4129 0.4109 (3) 0.4007 (3) 0.4041 0.3856 (3) 0.3773 0.3667 (4)

−0.0994 (4) −0.1415 (4) −0.0871 (4) 0.2927 (3) 0.2940 (4) 0.2882 (4) 0.2816 (4) 0.2809 (3) 0.2850 (3) 0.2786 (3) 0.3309 (3) 0.3723 0.3252 (3) 0.3815 (4) 0.3400 (3) 0.3908 (4) 0.4865 (4) 0.5295 (4) 0.4770 (4) 0.5385 (4) 0.4584 (4) 0.4644 0.3703 (4) 0.3170 0.3566 (4) 0.4379 (4) 0.4315 0.5268 (4) 0.5804 0.6344 (4) 0.6378 0.6813 0.6472 0.2582 (4) 0.2252 0.2634 0.2230 0.5314 (4) 0.4545 (4) 0.4633 0.3654 (4) 0.3141 0.3484 (4) 0.4255 (4) 0.4162 0.5160 (4) 0.5673 0.6277 (4)

0.0271 (12) 0.0297 (11) 0.0256 (11) 0.0229 (10) 0.0285 (12) 0.0286 (12) 0.0289 (12) 0.0229 (11) 0.0198 (10) 0.0192 (10) 0.0228 (11) 0.027* 0.0185 (10) 0.0188 (10) 0.0239 (10) 0.0282 (12) 0.0302 (13) 0.0334 (13) 0.0282 (12) 0.0338 (13) 0.0346 (13) 0.042* 0.0362 (14) 0.043* 0.0325 (12) 0.0351 (14) 0.042* 0.0361 (14) 0.043* 0.0561 (16) 0.084* 0.084* 0.084* 0.0531 (15) 0.080* 0.080* 0.080* 0.0335 (12) 0.0323 (13) 0.039* 0.0309 (13) 0.037* 0.0312 (12) 0.0341 (13) 0.041* 0.0363 (14) 0.044* 0.0542 (16)

sup-12

supporting information H45A H45B H45C C46 H46A H46B H46C C47 C48 H48 C49 H49 C50 C51 H51 C52 H52 C53 H53A H53B H53C C54 H54A H54B H54C C55 C56 H56 C57 H57 C58 C59 H59 C60 H60 C61 H61A H61B H61C C62 H62A H62B H62C F1 F2 F3 F4 F5

1.1102 1.0307 1.1121 0.7858 (4) 0.8170 0.7222 0.7712 0.8846 (5) 0.8805 (5) 0.8204 0.9605 (5) 0.9547 1.0498 (4) 1.0546 (5) 1.1146 0.9746 (4) 0.9809 0.7969 (5) 0.7373 0.8146 0.7811 1.1362 (5) 1.1363 1.2010 1.1274 0.2947 (4) 0.2916 (4) 0.2331 0.3736 (4) 0.3703 0.4600 (4) 0.4625 (5) 0.5213 0.3810 (4) 0.3844 0.2069 (4) 0.1428 0.2143 0.2065 0.5494 (5) 0.5914 0.5235 0.5907 −0.0914 (2) −0.2039 (2) −0.1187 (3) 0.0791 (3) 0.1939 (2)

Acta Cryst. (2014). C70, 960-964

0.3116 0.3563 0.4220 0.4263 (4) 0.4690 0.4538 0.3661 0.6716 (4) 0.5767 (4) 0.5517 0.5173 (4) 0.4526 0.5505 (4) 0.6454 (3) 0.6702 0.7053 (4) 0.7702 0.7352 (4) 0.7142 0.7993 0.7338 0.4856 (4) 0.4317 0.5193 0.4638 0.9636 (3) 0.8675 (3) 0.8405 0.8102 (3) 0.7448 0.8478 (3) 0.9432 (4) 0.9703 1.0008 (4) 1.0662 1.0250 (3) 0.9964 1.0869 1.0319 0.7846 (4) 0.8160 0.7253 0.7720 0.93329 (19) 1.0869 (2) 1.2595 (2) 1.2761 (2) 1.12306 (18)

0.6265 0.6728 0.6468 0.2498 (4) 0.2153 0.2538 0.2166 0.0277 (4) 0.0453 (4) 0.0545 0.0502 (4) 0.0631 0.0365 (4) 0.0190 (4) 0.0096 0.0150 (4) 0.0034 0.0211 (5) −0.0301 0.0084 0.0807 0.0369 (4) 0.0776 0.0608 −0.0273 0.3611 (4) 0.3757 (4) 0.3861 0.3754 (4) 0.3859 0.3599 (4) 0.3456 (4) 0.3359 0.3452 (4) 0.3339 0.3634 (4) 0.3254 0.3376 0.4285 0.3603 (5) 0.3270 0.3286 0.4254 0.0973 (2) 0.0913 (2) 0.0991 (3) 0.1088 (3) 0.1152 (2)

0.081* 0.081* 0.081* 0.0495 (15) 0.074* 0.074* 0.074* 0.0358 (13) 0.0378 (13) 0.045* 0.0390 (14) 0.047* 0.0315 (12) 0.0327 (13) 0.039* 0.0343 (13) 0.041* 0.0483 (16) 0.073* 0.073* 0.073* 0.0400 (14) 0.060* 0.060* 0.060* 0.0280 (11) 0.0291 (12) 0.035* 0.0308 (12) 0.037* 0.0328 (13) 0.0367 (13) 0.044* 0.0330 (12) 0.040* 0.0327 (12) 0.049* 0.049* 0.049* 0.0468 (15) 0.070* 0.070* 0.070* 0.0348 (7) 0.0403 (8) 0.0432 (9) 0.0471 (9) 0.0368 (8)

sup-13

supporting information F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

0.4650 (2) 0.5910 (2) 0.5146 (3) 0.3125 (2) 0.1851 (2) 0.4428 (2) 0.5569 (2) 0.4723 (3) 0.2723 (3) 0.1571 (2) −0.1166 (2) −0.2469 (2) −0.1767 (3) 0.0244 (3) 0.1557 (2)

0.8798 (2) 0.8735 (2) 0.8429 (2) 0.8195 (3) 0.8272 (3) 0.57798 (19) 0.4255 (2) 0.25216 (19) 0.2329 (2) 0.38428 (18) 0.6789 (2) 0.6749 (2) 0.6482 (2) 0.6189 (3) 0.6200 (2)

0.14101 (19) 0.0352 (2) −0.1535 (2) −0.23473 (19) −0.1294 (2) 0.3023 (2) 0.3068 (2) 0.2916 (3) 0.2774 (3) 0.2744 (2) 0.24653 (19) 0.3476 (2) 0.5368 (2) 0.6227 (2) 0.5226 (2)

0.0451 (8) 0.0522 (9) 0.0403 (8) 0.0515 (8) 0.0497 (8) 0.0344 (7) 0.0391 (8) 0.0463 (10) 0.0462 (9) 0.0342 (7) 0.0426 (7) 0.0486 (8) 0.0453 (9) 0.0594 (10) 0.0471 (8)

Atomic displacement parameters (Å2)

Cu1 O1 O2 O3 O4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

U11

U22

U33

U12

U13

U23

0.0261 (2) 0.0255 (19) 0.029 (2) 0.0265 (19) 0.0250 (19) 0.032 (3) 0.023 (3) 0.045 (4) 0.041 (3) 0.030 (3) 0.023 (3) 0.025 (3) 0.027 (3) 0.021 (3) 0.024 (3) 0.030 (3) 0.023 (3) 0.034 (3) 0.033 (3) 0.023 (3) 0.023 (3) 0.028 (3) 0.031 (3) 0.047 (3) 0.023 (3) 0.024 (3) 0.016 (2) 0.032 (3) 0.023 (3)

0.0175 (2) 0.0194 (15) 0.0204 (15) 0.0197 (15) 0.0181 (14) 0.022 (2) 0.037 (3) 0.024 (2) 0.022 (2) 0.023 (2) 0.023 (2) 0.0142 (19) 0.018 (2) 0.019 (2) 0.015 (2) 0.031 (2) 0.035 (2) 0.027 (2) 0.039 (3) 0.037 (3) 0.028 (2) 0.042 (3) 0.035 (3) 0.017 (2) 0.024 (2) 0.021 (2) 0.023 (2) 0.017 (2) 0.019 (2)

0.02174 (19) 0.0198 (18) 0.0236 (19) 0.0239 (19) 0.0255 (19) 0.023 (3) 0.024 (3) 0.024 (3) 0.027 (3) 0.026 (3) 0.016 (3) 0.018 (2) 0.020 (3) 0.018 (3) 0.024 (3) 0.021 (2) 0.034 (3) 0.030 (3) 0.019 (2) 0.018 (2) 0.018 (3) 0.016 (3) 0.020 (3) 0.027 (3) 0.024 (3) 0.015 (3) 0.019 (3) 0.022 (3) 0.016 (3)

0.00388 (18) 0.0047 (13) 0.0043 (14) 0.0026 (12) 0.0046 (13) 0.0000 (19) 0.012 (2) 0.018 (2) 0.005 (2) 0.0012 (19) 0.0036 (18) −0.0035 (17) 0.0030 (18) −0.0019 (17) 0.0008 (16) 0.000 (2) 0.004 (2) 0.001 (2) −0.001 (2) −0.0060 (19) 0.0032 (19) 0.011 (2) 0.019 (2) 0.005 (2) 0.0049 (18) 0.0030 (18) 0.0032 (17) 0.0035 (18) −0.0013 (17)

0.01416 (15) 0.0116 (15) 0.0157 (15) 0.0143 (15) 0.0138 (15) 0.013 (2) 0.010 (2) 0.013 (2) 0.010 (2) 0.012 (2) 0.008 (2) 0.004 (2) 0.011 (2) 0.007 (2) 0.013 (2) 0.011 (2) 0.013 (2) 0.024 (3) 0.011 (2) 0.008 (2) 0.007 (2) 0.007 (2) 0.010 (2) 0.016 (2) 0.011 (2) 0.008 (2) 0.006 (2) 0.013 (2) 0.008 (2)

0.00478 (18) 0.0039 (13) 0.0044 (14) 0.0050 (13) 0.0064 (13) 0.0006 (18) 0.003 (2) 0.003 (2) 0.001 (2) 0.0016 (19) 0.0014 (17) 0.0006 (17) 0.0040 (17) −0.0018 (17) 0.0017 (17) −0.0011 (19) 0.001 (2) 0.0031 (19) −0.001 (2) 0.0021 (19) 0.0034 (19) 0.001 (2) 0.004 (2) 0.0041 (19) 0.0015 (18) 0.0028 (17) −0.0007 (18) 0.0070 (18) −0.0011 (17)

Acta Cryst. (2014). C70, 960-964

sup-14

supporting information C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

0.025 (3) 0.028 (3) 0.019 (3) 0.034 (3) 0.044 (3) 0.026 (3) 0.023 (3) 0.029 (3) 0.039 (3) 0.036 (3) 0.029 (3) 0.031 (3) 0.044 (3) 0.046 (3) 0.038 (3) 0.023 (3) 0.032 (3) 0.034 (3) 0.028 (3) 0.049 (4) 0.063 (4) 0.031 (3) 0.040 (3) 0.030 (3) 0.049 (4) 0.038 (3) 0.035 (3) 0.041 (3) 0.041 (4) 0.051 (4) 0.029 (3) 0.032 (3) 0.040 (3) 0.029 (3) 0.038 (3) 0.034 (3) 0.029 (3) 0.042 (4) 0.0287 (17) 0.0270 (18) 0.057 (3) 0.068 (3) 0.0349 (19) 0.0291 (16) 0.0211 (15) 0.039 (2) 0.0469 (19) 0.0276 (16)

0.0140 (19) 0.023 (2) 0.031 (2) 0.024 (2) 0.040 (3) 0.031 (2) 0.030 (2) 0.026 (2) 0.026 (3) 0.023 (2) 0.029 (3) 0.037 (3) 0.074 (4) 0.060 (4) 0.021 (2) 0.031 (3) 0.025 (2) 0.027 (2) 0.031 (3) 0.022 (2) 0.058 (4) 0.066 (4) 0.041 (3) 0.048 (3) 0.035 (3) 0.040 (3) 0.040 (3) 0.034 (3) 0.059 (4) 0.037 (3) 0.035 (3) 0.035 (3) 0.028 (2) 0.038 (3) 0.041 (3) 0.036 (3) 0.036 (3) 0.049 (3) 0.0303 (15) 0.0545 (19) 0.0339 (18) 0.0177 (14) 0.0228 (14) 0.085 (2) 0.091 (2) 0.0525 (18) 0.091 (2) 0.096 (2)

Acta Cryst. (2014). C70, 960-964

0.020 (3) 0.022 (2) 0.037 (3) 0.045 (4) 0.023 (3) 0.030 (3) 0.048 (3) 0.054 (4) 0.052 (4) 0.042 (3) 0.050 (4) 0.046 (4) 0.051 (4) 0.051 (4) 0.040 (3) 0.045 (4) 0.042 (3) 0.037 (3) 0.049 (4) 0.047 (4) 0.039 (3) 0.050 (4) 0.022 (3) 0.035 (3) 0.034 (3) 0.015 (3) 0.022 (3) 0.024 (3) 0.041 (3) 0.031 (3) 0.019 (3) 0.019 (3) 0.022 (3) 0.030 (3) 0.034 (3) 0.029 (3) 0.031 (3) 0.053 (4) 0.049 (2) 0.043 (2) 0.042 (2) 0.059 (2) 0.058 (2) 0.0216 (14) 0.0463 (19) 0.041 (2) 0.0217 (15) 0.0263 (16)

0.0019 (17) −0.0031 (18) 0.0004 (19) 0.000 (2) 0.005 (2) 0.007 (2) −0.006 (2) −0.002 (2) 0.000 (2) 0.003 (2) 0.002 (2) −0.009 (2) −0.016 (3) 0.006 (3) 0.003 (2) 0.000 (2) 0.002 (2) 0.001 (2) −0.002 (2) 0.000 (2) 0.003 (3) 0.007 (3) −0.005 (2) −0.013 (2) −0.012 (2) −0.009 (2) −0.013 (2) −0.011 (2) 0.003 (3) −0.008 (3) −0.006 (2) −0.007 (2) −0.004 (2) −0.001 (2) −0.008 (2) −0.006 (2) −0.001 (2) −0.003 (3) −0.0016 (12) 0.0157 (13) 0.0280 (14) 0.0018 (16) −0.0049 (12) −0.0025 (15) −0.0014 (16) 0.0020 (14) −0.0092 (17) −0.0127 (16)

0.011 (2) 0.010 (2) 0.012 (2) 0.031 (3) 0.020 (2) 0.013 (2) 0.011 (2) 0.022 (3) 0.027 (3) 0.018 (3) 0.017 (3) 0.021 (3) 0.015 (3) 0.012 (3) 0.010 (3) 0.013 (3) 0.022 (3) 0.018 (2) 0.019 (3) 0.030 (3) 0.013 (3) 0.010 (3) 0.002 (2) 0.010 (3) 0.015 (3) 0.006 (2) 0.006 (2) 0.006 (2) 0.006 (3) 0.013 (3) 0.006 (2) 0.007 (2) 0.007 (2) 0.008 (2) 0.015 (3) 0.010 (2) 0.008 (2) 0.020 (3) 0.0168 (15) 0.0155 (15) 0.0208 (19) 0.0237 (19) 0.0222 (16) 0.0076 (12) 0.0135 (14) 0.0307 (16) 0.0177 (14) 0.0096 (12)

0.0012 (16) −0.0020 (18) −0.003 (2) 0.001 (2) 0.010 (2) 0.005 (2) −0.001 (2) 0.000 (2) 0.001 (2) 0.001 (2) −0.008 (2) −0.010 (2) 0.005 (3) 0.007 (3) 0.000 (2) 0.007 (2) 0.005 (2) 0.003 (2) −0.005 (2) 0.003 (2) −0.003 (3) 0.009 (3) −0.007 (2) −0.003 (2) 0.004 (2) 0.000 (2) −0.002 (2) −0.005 (2) −0.010 (3) 0.004 (2) −0.0032 (19) −0.005 (2) −0.0059 (19) −0.010 (2) −0.005 (2) 0.003 (2) 0.000 (2) −0.013 (3) 0.0003 (13) 0.0033 (15) 0.0054 (13) −0.0010 (15) −0.0023 (13) −0.0059 (15) −0.0028 (18) 0.0015 (14) −0.0082 (16) −0.0107 (16)

sup-15

supporting information F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

0.0240 (16) 0.0205 (16) 0.058 (3) 0.057 (2) 0.0298 (17) 0.0299 (15) 0.0236 (16) 0.048 (2) 0.061 (2) 0.0312 (17)

0.0322 (15) 0.065 (2) 0.042 (2) 0.0180 (14) 0.0219 (13) 0.072 (2) 0.071 (2) 0.0521 (19) 0.101 (3) 0.089 (2)

0.049 (2) 0.0341 (18) 0.041 (2) 0.068 (3) 0.056 (2) 0.0256 (15) 0.054 (2) 0.053 (2) 0.0254 (16) 0.0211 (15)

−0.0036 (12) 0.0129 (14) 0.0328 (15) 0.0067 (14) −0.0019 (12) 0.0038 (15) 0.0014 (14) 0.0003 (14) 0.0199 (19) 0.0173 (16)

0.0148 (14) 0.0110 (14) 0.0189 (19) 0.025 (2) 0.0207 (15) 0.0079 (12) 0.0169 (14) 0.0421 (19) 0.0259 (15) 0.0087 (12)

−0.0014 (14) −0.0022 (15) 0.0037 (13) 0.0039 (15) −0.0001 (13) 0.0014 (15) −0.0087 (17) 0.0033 (15) 0.0176 (17) 0.0095 (15)

Geometric parameters (Å, º) Cu1—O3 Cu1—O2 Cu1—O1 Cu1—O4 O1—C7 O2—C9 O3—C22 O4—C24 C1—F1 C1—C2 C1—C6 C2—F2 C2—C3 C3—F3 C3—C4 C4—F4 C4—C5 C5—F5 C5—C6 C6—C7 C7—C8 C8—C9 C8—H8 C9—C10 C10—C15 C10—C11 C11—F6 C11—C12 C12—F7 C12—C13 C13—F8 C13—C14 C14—F9 C14—C15 C15—F10

Acta Cryst. (2014). C70, 960-964

1.913 (3) 1.917 (3) 1.921 (3) 1.921 (3) 1.271 (5) 1.263 (5) 1.263 (5) 1.270 (5) 1.336 (5) 1.375 (7) 1.391 (7) 1.336 (6) 1.371 (7) 1.333 (5) 1.383 (8) 1.337 (6) 1.372 (7) 1.349 (6) 1.383 (6) 1.505 (6) 1.390 (6) 1.399 (6) 0.9500 1.508 (7) 1.375 (7) 1.390 (7) 1.332 (6) 1.375 (7) 1.336 (6) 1.358 (8) 1.352 (6) 1.375 (8) 1.346 (6) 1.377 (7) 1.340 (6)

C33—C34 C33—H33 C34—C35 C34—C38 C35—C36 C35—H35 C36—H36 C37—H37A C37—H37B C37—H37C C38—H38A C38—H38B C38—H38C C39—C40 C39—C44 C39—C45 C40—C41 C40—H40 C41—C42 C41—H41 C42—C43 C42—C46 C43—C44 C43—H43 C44—H44 C45—H45A C45—H45B C45—H45C C46—H46A C46—H46B C46—H46C C47—C48 C47—C52 C47—C53 C48—C49

1.387 (8) 0.9500 1.406 (8) 1.526 (8) 1.379 (8) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.374 (8) 1.399 (8) 1.502 (8) 1.375 (8) 0.9500 1.370 (7) 0.9500 1.396 (8) 1.519 (7) 1.395 (8) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.382 (7) 1.399 (8) 1.491 (8) 1.375 (8)

sup-16

supporting information C16—F11 C16—C17 C16—C21 C17—F12 C17—C18 C18—F13 C18—C19 C19—F14 C19—C20 C20—F15 C20—C21 C21—C22 C22—C23 C23—C24 C23—H23 C24—C25 C25—C30 C25—C26 C26—F16 C26—C27 C27—F17 C27—C28 C28—F18 C28—C29 C29—F19 C29—C30 C30—F20 C31—C32 C31—C36 C31—C37 C32—C33 C32—H32

1.336 (5) 1.379 (7) 1.388 (7) 1.344 (6) 1.362 (7) 1.343 (5) 1.374 (8) 1.340 (5) 1.388 (7) 1.336 (5) 1.388 (6) 1.496 (6) 1.400 (6) 1.386 (6) 0.9500 1.505 (7) 1.376 (7) 1.378 (7) 1.348 (5) 1.379 (7) 1.340 (6) 1.375 (8) 1.337 (6) 1.365 (8) 1.340 (6) 1.377 (7) 1.346 (6) 1.376 (8) 1.410 (7) 1.490 (8) 1.368 (8) 0.9500

C48—H48 C49—C50 C49—H49 C50—C51 C50—C54 C51—C52 C51—H51 C52—H52 C53—H53A C53—H53B C53—H53C C54—H54A C54—H54B C54—H54C C55—C56 C55—C60 C55—C61 C56—C57 C56—H56 C57—C58 C57—H57 C58—C59 C58—C62 C59—C60 C59—H59 C60—H60 C61—H61A C61—H61B C61—H61C C62—H62A C62—H62B C62—H62C

0.9500 1.394 (8) 0.9500 1.384 (7) 1.507 (8) 1.381 (8) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.390 (7) 1.391 (7) 1.504 (7) 1.396 (7) 0.9500 1.390 (8) 0.9500 1.379 (7) 1.527 (8) 1.391 (8) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

O3—Cu1—O2 O3—Cu1—O1 O2—Cu1—O1 O3—Cu1—O4 O2—Cu1—O4 O1—Cu1—O4 C7—O1—Cu1 C9—O2—Cu1 C22—O3—Cu1 C24—O4—Cu1 F1—C1—C2 F1—C1—C6 C2—C1—C6 F2—C2—C3 F2—C2—C1

86.38 (14) 179.80 (19) 93.42 (13) 93.40 (14) 179.57 (18) 86.80 (13) 125.0 (3) 125.0 (3) 126.0 (3) 124.9 (3) 117.5 (5) 119.6 (4) 122.7 (4) 119.9 (4) 120.4 (5)

C33—C34—C38 C35—C34—C38 C36—C35—C34 C36—C35—H35 C34—C35—H35 C35—C36—C31 C35—C36—H36 C31—C36—H36 C31—C37—H37A C31—C37—H37B H37A—C37—H37B C31—C37—H37C H37A—C37—H37C H37B—C37—H37C C34—C38—H38A

121.7 (5) 121.6 (5) 121.7 (6) 119.2 119.2 120.3 (6) 119.8 119.8 109.5 109.5 109.5 109.5 109.5 109.5 109.5

Acta Cryst. (2014). C70, 960-964

sup-17

supporting information C3—C2—C1 F3—C3—C2 F3—C3—C4 C2—C3—C4 F4—C4—C5 F4—C4—C3 C5—C4—C3 F5—C5—C4 F5—C5—C6 C4—C5—C6 C5—C6—C1 C5—C6—C7 C1—C6—C7 O1—C7—C8 O1—C7—C6 C8—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8 O2—C9—C8 O2—C9—C10 C8—C9—C10 C15—C10—C11 C15—C10—C9 C11—C10—C9 F6—C11—C12 F6—C11—C10 C12—C11—C10 F7—C12—C13 F7—C12—C11 C13—C12—C11 F8—C13—C12 F8—C13—C14 C12—C13—C14 F9—C14—C13 F9—C14—C15 C13—C14—C15 F10—C15—C10 F10—C15—C14 C10—C15—C14 F11—C16—C17 F11—C16—C21 C17—C16—C21 F12—C17—C18 F12—C17—C16 C18—C17—C16 F13—C18—C17 F13—C18—C19

Acta Cryst. (2014). C70, 960-964

119.6 (5) 120.5 (5) 119.9 (5) 119.6 (4) 121.4 (5) 119.2 (4) 119.4 (5) 117.0 (4) 120.0 (4) 123.1 (5) 115.6 (4) 123.1 (4) 121.2 (4) 126.8 (4) 114.3 (4) 118.8 (4) 122.0 (4) 119.0 119.0 127.0 (5) 115.1 (4) 117.9 (4) 117.3 (5) 121.6 (5) 121.0 (5) 118.9 (5) 119.6 (4) 121.5 (5) 120.3 (5) 120.1 (5) 119.6 (5) 120.6 (5) 118.8 (5) 120.6 (5) 119.9 (5) 120.9 (5) 119.3 (5) 120.1 (4) 118.1 (5) 121.7 (5) 117.7 (5) 120.3 (4) 122.0 (5) 120.1 (4) 119.9 (5) 119.9 (5) 120.2 (5) 119.5 (5)

C34—C38—H38B H38A—C38—H38B C34—C38—H38C H38A—C38—H38C H38B—C38—H38C C40—C39—C44 C40—C39—C45 C44—C39—C45 C39—C40—C41 C39—C40—H40 C41—C40—H40 C42—C41—C40 C42—C41—H41 C40—C41—H41 C41—C42—C43 C41—C42—C46 C43—C42—C46 C44—C43—C42 C44—C43—H43 C42—C43—H43 C43—C44—C39 C43—C44—H44 C39—C44—H44 C39—C45—H45A C39—C45—H45B H45A—C45—H45B C39—C45—H45C H45A—C45—H45C H45B—C45—H45C C42—C46—H46A C42—C46—H46B H46A—C46—H46B C42—C46—H46C H46A—C46—H46C H46B—C46—H46C C48—C47—C52 C48—C47—C53 C52—C47—C53 C49—C48—C47 C49—C48—H48 C47—C48—H48 C48—C49—C50 C48—C49—H49 C50—C49—H49 C51—C50—C49 C51—C50—C54 C49—C50—C54 C52—C51—C50

109.5 109.5 109.5 109.5 109.5 117.7 (6) 120.7 (5) 121.7 (6) 121.8 (5) 119.1 119.1 121.8 (5) 119.1 119.1 117.3 (5) 121.6 (5) 121.2 (5) 121.4 (5) 119.3 119.3 120.0 (5) 120.0 120.0 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 116.9 (5) 121.8 (6) 121.3 (5) 122.2 (5) 118.9 118.9 121.1 (5) 119.5 119.5 117.0 (5) 121.2 (5) 121.8 (5) 121.9 (5)

sup-18

supporting information C17—C18—C19 F14—C19—C18 F14—C19—C20 C18—C19—C20 F15—C20—C19 F15—C20—C21 C19—C20—C21 C16—C21—C20 C16—C21—C22 C20—C21—C22 O3—C22—C23 O3—C22—C21 C23—C22—C21 C24—C23—C22 C24—C23—H23 C22—C23—H23 O4—C24—C23 O4—C24—C25 C23—C24—C25 C30—C25—C26 C30—C25—C24 C26—C25—C24 F16—C26—C25 F16—C26—C27 C25—C26—C27 F17—C27—C28 F17—C27—C26 C28—C27—C26 F18—C28—C29 F18—C28—C27 C29—C28—C27 F19—C29—C28 F19—C29—C30 C28—C29—C30 F20—C30—C25 F20—C30—C29 C25—C30—C29 C32—C31—C36 C32—C31—C37 C36—C31—C37 C33—C32—C31 C33—C32—H32 C31—C32—H32 C32—C33—C34 C32—C33—H33 C34—C33—H33 C33—C34—C35

Acta Cryst. (2014). C70, 960-964

120.3 (4) 120.6 (4) 120.0 (5) 119.5 (5) 117.5 (4) 120.9 (4) 121.7 (5) 116.7 (4) 120.4 (4) 122.8 (4) 125.7 (4) 115.3 (4) 119.0 (4) 123.1 (4) 118.5 118.5 126.7 (5) 114.6 (4) 118.7 (4) 116.3 (5) 122.0 (5) 121.6 (5) 120.1 (4) 117.4 (4) 122.5 (5) 120.0 (5) 120.6 (5) 119.4 (5) 120.4 (5) 120.0 (5) 119.6 (5) 119.7 (5) 120.4 (5) 119.9 (5) 119.8 (5) 117.9 (5) 122.3 (5) 117.4 (6) 122.0 (5) 120.5 (5) 122.0 (5) 119.0 119.0 121.8 (6) 119.1 119.1 116.7 (6)

C52—C51—H51 C50—C51—H51 C51—C52—C47 C51—C52—H52 C47—C52—H52 C47—C53—H53A C47—C53—H53B H53A—C53—H53B C47—C53—H53C H53A—C53—H53C H53B—C53—H53C C50—C54—H54A C50—C54—H54B H54A—C54—H54B C50—C54—H54C H54A—C54—H54C H54B—C54—H54C C56—C55—C60 C56—C55—C61 C60—C55—C61 C55—C56—C57 C55—C56—H56 C57—C56—H56 C58—C57—C56 C58—C57—H57 C56—C57—H57 C59—C58—C57 C59—C58—C62 C57—C58—C62 C58—C59—C60 C58—C59—H59 C60—C59—H59 C59—C60—C55 C59—C60—H60 C55—C60—H60 C55—C61—H61A C55—C61—H61B H61A—C61—H61B C55—C61—H61C H61A—C61—H61C H61B—C61—H61C C58—C62—H62A C58—C62—H62B H62A—C62—H62B C58—C62—H62C H62A—C62—H62C H62B—C62—H62C

119.0 119.0 120.9 (5) 119.6 119.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 118.2 (5) 120.4 (5) 121.4 (5) 120.7 (5) 119.6 119.6 120.9 (5) 119.6 119.6 118.0 (5) 121.5 (5) 120.4 (5) 121.6 (5) 119.2 119.2 120.5 (5) 119.7 119.7 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

sup-19

supporting information F1—C1—C2—F2 C6—C1—C2—F2 F1—C1—C2—C3 C6—C1—C2—C3 F2—C2—C3—F3 C1—C2—C3—F3 F2—C2—C3—C4 C1—C2—C3—C4 F3—C3—C4—F4 C2—C3—C4—F4 F3—C3—C4—C5 C2—C3—C4—C5 F4—C4—C5—F5 C3—C4—C5—F5 F4—C4—C5—C6 C3—C4—C5—C6 F5—C5—C6—C1 C4—C5—C6—C1 F5—C5—C6—C7 C4—C5—C6—C7 F1—C1—C6—C5 C2—C1—C6—C5 F1—C1—C6—C7 C2—C1—C6—C7 Cu1—O1—C7—C8 Cu1—O1—C7—C6 C5—C6—C7—O1 C1—C6—C7—O1 C5—C6—C7—C8 C1—C6—C7—C8 O1—C7—C8—C9 C6—C7—C8—C9 Cu1—O2—C9—C8 Cu1—O2—C9—C10 C7—C8—C9—O2 C7—C8—C9—C10 O2—C9—C10—C15 C8—C9—C10—C15 O2—C9—C10—C11 C8—C9—C10—C11 C15—C10—C11—F6 C9—C10—C11—F6 C15—C10—C11—C12 C9—C10—C11—C12 F6—C11—C12—F7 C10—C11—C12—F7 F6—C11—C12—C13 C10—C11—C12—C13

Acta Cryst. (2014). C70, 960-964

1.6 (7) 176.8 (5) −178.2 (5) −3.0 (8) −0.5 (7) 179.3 (5) −176.9 (5) 2.9 (8) 0.7 (7) 177.1 (5) −177.7 (5) −1.3 (8) 1.7 (7) −179.9 (5) −178.7 (5) −0.2 (8) 179.8 (4) 0.2 (7) 2.4 (7) −177.2 (5) 176.6 (4) 1.5 (7) −6.0 (7) 178.9 (5) 0.8 (7) −179.3 (3) 134.0 (5) −43.3 (6) −46.1 (7) 136.6 (5) −6.4 (8) 173.7 (4) 5.0 (7) −174.2 (3) 3.2 (8) −177.7 (4) 108.7 (5) −70.5 (6) −68.1 (5) 112.7 (5) 179.3 (4) −3.8 (6) 0.5 (7) 177.5 (4) 1.2 (7) 179.9 (4) 179.6 (4) −1.7 (7)

F15—C20—C21—C16 C19—C20—C21—C16 F15—C20—C21—C22 C19—C20—C21—C22 Cu1—O3—C22—C23 Cu1—O3—C22—C21 C16—C21—C22—O3 C20—C21—C22—O3 C16—C21—C22—C23 C20—C21—C22—C23 O3—C22—C23—C24 C21—C22—C23—C24 Cu1—O4—C24—C23 Cu1—O4—C24—C25 C22—C23—C24—O4 C22—C23—C24—C25 O4—C24—C25—C30 C23—C24—C25—C30 O4—C24—C25—C26 C23—C24—C25—C26 C30—C25—C26—F16 C24—C25—C26—F16 C30—C25—C26—C27 C24—C25—C26—C27 F16—C26—C27—F17 C25—C26—C27—F17 F16—C26—C27—C28 C25—C26—C27—C28 F17—C27—C28—F18 C26—C27—C28—F18 F17—C27—C28—C29 C26—C27—C28—C29 F18—C28—C29—F19 C27—C28—C29—F19 F18—C28—C29—C30 C27—C28—C29—C30 C26—C25—C30—F20 C24—C25—C30—F20 C26—C25—C30—C29 C24—C25—C30—C29 F19—C29—C30—F20 C28—C29—C30—F20 F19—C29—C30—C25 C28—C29—C30—C25 C36—C31—C32—C33 C37—C31—C32—C33 C31—C32—C33—C34 C32—C33—C34—C35

179.3 (4) −1.8 (7) −2.6 (7) 176.2 (5) −0.1 (7) 179.1 (3) 43.8 (6) −134.2 (5) −136.9 (5) 45.1 (7) 3.2 (8) −176.1 (4) −4.9 (7) 177.3 (3) −0.4 (8) 177.4 (4) −128.2 (5) 53.7 (6) 50.7 (6) −127.3 (5) −179.3 (4) 1.7 (6) 0.4 (6) −178.6 (4) 0.7 (6) −179.0 (4) −179.4 (4) 0.9 (7) −1.2 (7) 178.8 (4) 178.6 (4) −1.4 (7) 0.0 (7) −179.8 (4) −179.7 (4) 0.5 (7) −179.6 (4) −0.6 (6) −1.3 (7) 177.8 (4) −0.4 (7) 179.3 (4) −178.9 (4) 0.8 (8) 1.3 (7) 179.9 (5) −0.6 (8) −0.1 (7)

sup-20

supporting information F7—C12—C13—F8 C11—C12—C13—F8 F7—C12—C13—C14 C11—C12—C13—C14 F8—C13—C14—F9 C12—C13—C14—F9 F8—C13—C14—C15 C12—C13—C14—C15 C11—C10—C15—F10 C9—C10—C15—F10 C11—C10—C15—C14 C9—C10—C15—C14 F9—C14—C15—F10 C13—C14—C15—F10 F9—C14—C15—C10 C13—C14—C15—C10 F11—C16—C17—F12 C21—C16—C17—F12 F11—C16—C17—C18 C21—C16—C17—C18 F12—C17—C18—F13 C16—C17—C18—F13 F12—C17—C18—C19 C16—C17—C18—C19 F13—C18—C19—F14 C17—C18—C19—F14 F13—C18—C19—C20 C17—C18—C19—C20 F14—C19—C20—F15 C18—C19—C20—F15 F14—C19—C20—C21 C18—C19—C20—C21 F11—C16—C21—C20 C17—C16—C21—C20 F11—C16—C21—C22 C17—C16—C21—C22

Acta Cryst. (2014). C70, 960-964

−0.4 (7) −178.8 (4) 179.7 (5) 1.4 (7) 0.7 (7) −179.5 (4) −179.7 (4) 0.1 (7) 178.5 (4) 1.6 (6) 1.0 (7) −175.9 (4) 0.7 (7) −178.9 (4) 178.3 (4) −1.3 (7) 1.6 (7) −176.3 (5) 177.5 (5) −0.4 (7) −2.6 (7) −178.5 (5) 175.5 (5) −0.3 (7) −0.8 (8) −178.9 (5) 178.1 (4) 0.0 (8) −1.0 (7) −180.0 (5) −179.9 (5) 1.1 (8) −176.4 (4) 1.5 (7) 5.5 (7) −176.6 (4)

C32—C33—C34—C38 C33—C34—C35—C36 C38—C34—C35—C36 C34—C35—C36—C31 C32—C31—C36—C35 C37—C31—C36—C35 C44—C39—C40—C41 C45—C39—C40—C41 C39—C40—C41—C42 C40—C41—C42—C43 C40—C41—C42—C46 C41—C42—C43—C44 C46—C42—C43—C44 C42—C43—C44—C39 C40—C39—C44—C43 C45—C39—C44—C43 C52—C47—C48—C49 C53—C47—C48—C49 C47—C48—C49—C50 C48—C49—C50—C51 C48—C49—C50—C54 C49—C50—C51—C52 C54—C50—C51—C52 C50—C51—C52—C47 C48—C47—C52—C51 C53—C47—C52—C51 C60—C55—C56—C57 C61—C55—C56—C57 C55—C56—C57—C58 C56—C57—C58—C59 C56—C57—C58—C62 C57—C58—C59—C60 C62—C58—C59—C60 C58—C59—C60—C55 C56—C55—C60—C59 C61—C55—C60—C59

−179.1 (5) 0.0 (7) 179.0 (5) 0.8 (8) −1.4 (7) 180.0 (5) 0.1 (7) 179.0 (5) 0.7 (8) −0.3 (7) 179.5 (5) −0.8 (7) 179.4 (5) 1.6 (7) −1.2 (7) 179.9 (5) −0.2 (8) 179.1 (5) −0.6 (9) 0.7 (8) −177.0 (5) −0.2 (8) 177.6 (5) −0.6 (8) 0.7 (8) −178.5 (5) 0.7 (7) −178.8 (5) −0.4 (8) 0.5 (8) 179.6 (5) −1.0 (8) 179.9 (5) 1.3 (9) −1.1 (8) 178.4 (5)

sup-21

Copyright of Acta Crystallographica: Section C, Structural Chemistry is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Three p-xylene-solvated pseudopolymorphs of bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II). - PDF Download Free (2024)

References

Top Articles
Tofu Burgers - Easy Vegan Recipe
8 No Bake Energy Ball Recipes You Have to Try!
Gortershof in Zaandijk | AlleCijfers.nl
The McPherson Republican from McPherson, Kansas
Nene25 Sports
The Girl Next Door | Rotten Tomatoes
Cristiano Ronaldo's Jersey Number: The Story Behind His No. 7 Shirt | Football News
Hidden Goblin Stash Failed Perception
The Blind Showtimes Near Merchants Walk Cinemas
United Center Section 305
Leccion 4 Lesson Test
Rebecca Benedict Forum
J. Foster Phillips Funeral Home Obituaries
Chicken Coop Brookhaven Ms
Long-awaited Ringu sequel Sadako doesn’t click with the 21st century
Craigslist Apartment Los Angeles
Linktree Teentinyangel
Baca's Funeral Chapels & Sunset Crematory Las Cruces Obituaries
Secret Stars Sessions Julia
636-730-9503
New Orleans Magazine | Dining, Entertainment, Homes, Lifestyle and all things NOLA
Spring Tx Radar
Closest Dollar Tree Store To My Location
Twitter claims there’s “no evidence” 200 million leaked usernames and email addresses came from an exploit of its systems
27 Sage Street Holmdel Nj
The Origins Behind Kurt Angle's "Perc Angle" Nickname In TNA
Walgreens Pharmacy On Jennings Station Road
Gustavo Naspolini Relationship
Mrballen Political Views
Calculating R-Value: How To Calculate R-Value? (Formula + Units)
Dki Brain Teaser
Woude's Bay Bar Photos
Mannat Indian Grocers
Harry Potter 3 123Movies
The "Minus Sign (−)" Symbol in Mathematics
Horseheads Schooltool
Colorado Pick 3 Lottery
Entourage Yearbook Login
Magma Lozenge Location
18006548818
Lee County Buy Sell And Trade
Ssndob Cm
Directions To Pnc Near Me
Comenity Bank Ann Taylor Loft
How Big is a 4×6 Photo?(Inch, cm, mm, Ft, Pixels) - PhotographyAxis
8569 Marshall St, Merrillville, IN 46410 - MLS 809825 - Coldwell Banker
Tyler Sis Ferg
Craigslist Westchester Free Stuff
Basketball Stars Unblocked 66 Ez
Craigslist Groton
Winta Zesu Net Worth
Latest Posts
Article information

Author: Saturnina Altenwerth DVM

Last Updated:

Views: 5971

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Saturnina Altenwerth DVM

Birthday: 1992-08-21

Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

Phone: +331850833384

Job: District Real-Estate Architect

Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.